Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.084
Filtrar
1.
Science ; 383(6689): eadg4320, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513038

RESUMO

Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Peptídeo Sintases , Engenharia de Proteínas , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Filogenia , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Análise de Sequência de Proteína
2.
J Mol Biol ; 435(18): 168209, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479080

RESUMO

Characterizing the effects of mutations on stability is critical for understanding the function and evolution of proteins and improving their biophysical properties. High throughput folding and abundance assays have been successfully used to characterize missense mutations associated with reduced stability. However, screening for increased thermodynamic stability is more challenging since such mutations are rarer and their impact on assay readout is more subtle. Here, a multiplex assay for high throughput screening of protein folding was developed by combining deep mutational scanning, fluorescence-activated cell sorting, and deep sequencing. By analyzing a library of 2000 variants of Adenylate kinase we demonstrate that the readout of the method correlates with stability and that mutants with up to 13 °C increase in thermal melting temperature could be identified with low false positive rate. The discovery of many stabilizing mutations also enabled the analysis of general substitution patterns associated with increased stability in Adenylate kinase. This high throughput method to identify stabilizing mutations can be combined with functional screens to identify mutations that improve both stability and activity.


Assuntos
Sequência de Aminoácidos , Mutação de Sentido Incorreto , Dobramento de Proteína , Estabilidade Proteica , Análise de Sequência de Proteína , Adenilato Quinase/química , Adenilato Quinase/genética , Sequência de Aminoácidos/genética , Ensaios de Triagem em Larga Escala/métodos , Análise de Sequência de Proteína/métodos , Temperatura
3.
J Virol ; 97(3): e0181922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815785

RESUMO

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Assuntos
Proteínas do Capsídeo , Papillomavirus Humano 16 , Feminino , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos/genética , Mutação , Linhagem Celular , Estrutura Terciária de Proteína/genética , Modelos Moleculares
4.
Science ; 376(6595): 823-830, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587978

RESUMO

Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive data are available on the extent and temporal dynamics of changes in the effects of mutations as protein sequences evolve. Here, we use phylogenetic deep mutational scanning to measure the functional effect of every possible amino acid mutation in a series of ancestral and extant steroid receptor DNA binding domains. Across 700 million years of evolution, epistatic interactions caused the effects of most mutations to become decorrelated from their initial effects and their windows of evolutionary accessibility to open and close transiently. Most effects changed gradually and without bias at rates that were largely constant across time, indicating a neutral process caused by many weak epistatic interactions. Our findings show that protein sequences drift inexorably into contingency and unpredictability, but that the process is statistically predictable, given sufficient phylogenetic and experimental data.


Assuntos
Proteínas de Ligação a DNA , Epistasia Genética , Evolução Molecular , Receptores de Esteroides , Sequência de Aminoácidos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Mutação , Filogenia , Ligação Proteica , Domínios Proteicos , Receptores de Esteroides/química , Receptores de Esteroides/genética
5.
Biochimie ; 198: 48-59, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307483

RESUMO

Bacillus sp. HR21-6 is capable of the chemo- and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols, which are powerful antioxidants important in the formulation of functional foods. In this work, an acetyl esterase was identified in the secretome of this strain by non-targeted proteomics, and classified in the GDSL family (superfamily SGNH). The recombinant protein was expressed and purified from Escherichia coli in the soluble form, and biochemically characterized. Site-directed mutagenesis was performed to understand the role of different amino acids that are conserved among GDSL superfamily of esterases. Mutation of Ser-10, Gly-45 or His-185 abolished the enzyme activity, while mutation of Asn-77 or Thr-184 altered the substrate specificity of the enzyme. This new enzyme is able to perform chemoselective conversions of olive phenolic compounds with great interest in the food industry, such as hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein.


Assuntos
Acetilesterase , Bacillus , Proteínas de Bactérias , Acetilesterase/química , Acetilesterase/genética , Sequência de Aminoácidos/genética , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli , Esterases/metabolismo , Mutagênese Sítio-Dirigida , Especificidade por Substrato/genética
6.
Nat Commun ; 13(1): 746, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136054

RESUMO

The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein backbones, having learned directly from crystal structure data and without any human-specified priors. The model generalizes to native topologies not seen during training, producing experimentally stable designs. We evaluate the generalizability of our method to a de novo TIM-barrel scaffold. The model produces novel sequences, and high-resolution crystal structures of two designs show excellent agreement with in silico models. Our findings demonstrate the tractability of an entirely learned method for protein sequence design.


Assuntos
Aprendizado Profundo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos/genética , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos/genética , Dobramento de Proteína
7.
J Immunol ; 208(5): 1128-1138, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35173035

RESUMO

Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.


Assuntos
Galinhas/genética , Galinhas/imunologia , Fatores de Transcrição Forkhead/genética , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos/genética , Animais , Sequência de Bases , Diferenciação Celular/imunologia , Perfilação da Expressão Gênica , Genoma/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163274

RESUMO

Eukarya pyruvate kinases possess glutamate at position 117 (numbering of rabbit muscle enzyme), whereas bacteria have either glutamate or lysine. Those with E117 are K+-dependent, whereas those with K117 are K+-independent. In a phylogenetic tree, 80% of the sequences with E117 are occupied by T113/K114/T120 and 77% of those with K117 possess L113/Q114/(L,I,V)120. This work aims to understand these residues' contribution to the K+-independent pyruvate kinases using the K+-dependent rabbit muscle enzyme. Residues 117 and 120 are crucial in the differences between the K+-dependent and -independent mutants. K+-independent activity increased with L113 and Q114 to K117, but L120 induced structural differences that inactivated the enzyme. T120 appears to be key in folding the protein and closure of the lid of the active site to acquire its active conformation in the K+-dependent enzymes. E117K mutant was K+-independent and the enzyme acquired the active conformation by a different mechanism. In the K+-independent apoenzyme of Mycobacterium tuberculosis, K72 (K117) flips out of the active site; in the holoenzyme, K72 faces toward the active site bridging the substrates through water molecules. The results provide evidence that two different mechanisms have evolved for the catalysis of this reaction.


Assuntos
Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/ultraestrutura , Sequência de Aminoácidos/genética , Animais , Apoenzimas/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Ácido Glutâmico/metabolismo , Lisina/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Filogenia , Potássio/metabolismo , Conformação Proteica , Coelhos
9.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091471

RESUMO

We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide-Kv1.3). Both the apo-Kv1.3 and dalazatide-Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide-Kv1.3, binding of dalazatide to the channel's outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3's transition into the drug-blocked state.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.3/efeitos dos fármacos , Potenciais da Membrana , Microscopia Eletrônica/métodos , Modelos Moleculares , Conformação Molecular , Potássio/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/ultraestrutura , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/ultraestrutura , Alinhamento de Sequência/métodos
10.
Mol Biol Rep ; 49(2): 1643-1647, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028856

RESUMO

BACKGROUND: Fatty acid elongases (FAEs), which catalyse elongation reactions of a carbon chain of very-long-chain fatty acids, play an important role in shoot development in rice. The elongation reactions consist of four sequential reactions catalysed by distinct enzymes, which are assumed to form an elongation complex. However, no interacting proteins of ONION1 (ONI1) and ONI2, which are ketoacyl CoA synthase catalyzing the first step and are required for shoot development in rice, are reported. METHODS AND RESULTS: In this study ketoacyl CoA reductase (KCR) that interacts with ONI1 and ONI2 was searched. A database search identified 10 KCR genes in the rice genome. Among the genes, the expression pattern of KCR1 was similar to that of ONI2. Yeast two-hybrid analysis showed interaction of ONI2 with KCR1, which was confirmed by GST pull-down assay. No interacting partner of ONI1 was identified. CONCLUSIONS: Our results suggest that ONI2 and KCR1 form an FAE complex that may play a role in biosynthesizing VLCFAs during shoot development.


Assuntos
3-Oxoacil-(Proteína Carreadora de Acil) Redutase/metabolismo , Elongases de Ácidos Graxos/metabolismo , Oryza/metabolismo , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase/fisiologia , Acetiltransferases/genética , Sequência de Aminoácidos/genética , Clonagem Molecular/métodos , Coenzima A/genética , Coenzima A/metabolismo , Elongases de Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oxirredutases/genética , Proteínas de Plantas/genética
11.
Anticancer Res ; 42(1): 355-362, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34969745

RESUMO

BACKGROUND/AIM: Renal cell carcinoma (RCC) is among the most common renal malignancies and requires reliable biomarkers for optimum diagnosis and prognosis. Copines are a family of calcium-dependent phospholipid-binding proteins that were reported to be associated with various cancers. We aimed to investigate the prognostic value of Copines 1 and 3 in RCC patients. MATERIALS AND METHODS: Copines 1 and 3 bioinformatics analysis and immunohistochemical (IHC) staining were performed on patients with RCC. RESULTS: The findings revealed significant association between Copine 1 expression and the patients' age, nuclear grade, and tumor stage. Bioinformatics analysis showed a similar trend for the mRNA expression of CPNE1, the gene that encodes Copine 1. Interestingly, results revealed a positive association between Copine 1 and both EphA and Ki-67 expression levels. Noteworthy, there was no significant association between Copine 3 expression and any parameters. CONCLUSION: Copine 1 may be used as an independent biomarker or in combination with both EphA2 and Ki-67 to predict disease outcome.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Carcinoma de Células Renais/genética , Antígeno Ki-67/genética , Receptor EphA2/genética , Idoso , Sequência de Aminoácidos/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Proteínas de Transporte/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Intervalo Livre de Progressão
12.
Nucleic Acids Res ; 50(D1): D1535-D1540, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718696

RESUMO

Proteome-pI 2.0 is an update of an online database containing predicted isoelectric points and pKa dissociation constants of proteins and peptides. The isoelectric point-the pH at which a particular molecule carries no net electrical charge-is an important parameter for many analytical biochemistry and proteomics techniques. Additionally, it can be obtained directly from the pKa values of individual charged residues of the protein. The Proteome-pI 2.0 database includes data for over 61 million protein sequences from 20 115 proteomes (three to four times more than the previous release). The isoelectric point for proteins is predicted by 21 methods, whereas pKa values are inferred by one method. To facilitate bottom-up proteomics analysis, individual proteomes were digested in silico with the five most commonly used proteases (trypsin, chymotrypsin, trypsin + LysC, LysN, ArgC), and the peptides' isoelectric point and molecular weights were calculated. The database enables the retrieval of virtual 2D-PAGE plots and customized fractions of a proteome based on the isoelectric point and molecular weight. In addition, isoelectric points for proteins in NCBI non-redundant (nr), UniProt, SwissProt, and Protein Data Bank are available in both CSV and FASTA formats. The database can be accessed at http://isoelectricpointdb2.org.


Assuntos
Bases de Dados de Proteínas , Ponto Isoelétrico , Peptídeos/química , Proteoma/química , Sequência de Aminoácidos/genética , Biologia Computacional , Eletroforese em Gel Bidimensional , Peso Molecular , Proteoma/classificação , Proteômica/normas
13.
Mol Biol Rep ; 49(2): 951-969, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34773550

RESUMO

BACKGROUND: Using in silico sequence analyses, the present study aims to clone and express the gene-encoding sequence of a GH19 chitinase from Enterobacter sp. in Escherichia coli. METHODS AND RESULTS: The putative open reading frame of a GH19 chitinase from Enterobacter sp. strain EGY1 was cloned and expressed into pGEM®-T and pET-28a (+) vectors, respectively using a degenerate primer. The isolated nucleotide sequence (1821 bp, GenBank accession no.: MK533791.2) was translated to a chiRAM protein (606 amino acids, UniProt accession no.: A0A4D6J2L9). The in silico protein sequence analysis of chiRAM revealed a class I GH19 chitinase: an N-terminus signal peptide (Met1-Ala23), a catalytic domain (Val83-Glu347 and the catalytic triad Glu149, Glu171, and Ser218), a proline-rich hinge region (Pro414 -Pro450), a polycystic kidney disease protein motif (Gly 465-Ser 533), a C-terminus chitin-binding domain (Ala553- Glu593), and conserved class I motifs (NYNY and AQETGG). A three-dimensional model was constructed by LOMETS MODELLER of PDB template: 2dkvA (class I chitinase of Oryza sativa L. japonica). Recombinant chiRAM was overexpressed as inclusion bodies (IBs) (~ 72 kDa; SDS-PAGE) in 1.0 mM IPTG induced E. coli BL21 (DE3) Rosetta strain at room temperature 18 h after induction. Optimized expression yielded active chiRAM with 1.974 ± 0.0002 U/mL, on shrimp colloidal chitin (SCC), in induced E. coli BL21 (DE3) Rosetta cells growing in SB medium. LC-MS/MS identified a band of 72 kDa in the soluble fraction with a 52.3% coverage sequence exclusive to the GH19 chitinase of Enterobacter cloacae (WP_063869339.1). CONCLUSIONS: Although chiRAM of Enterobacter sp. was successfully cloned and expressed in E. coli with appreciable chitinase activity, future studies should focus on minimizing IBs to facilitate chiRAM purification and characterization.


Assuntos
Quitinases/genética , Enterobacter/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Quitina/química , Quitina/genética , Quitina/metabolismo , Quitinases/metabolismo , Cromatografia Líquida/métodos , Clonagem Molecular/métodos , Simulação por Computador , Escherichia coli/genética , Fases de Leitura Aberta/genética , Proteínas de Plantas , Análise de Sequência/métodos , Espectrometria de Massas em Tandem/métodos
14.
Nucleic Acids Res ; 50(D1): D1273-D1281, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34747487

RESUMO

Nanobodies, a subclass of antibodies found in camelids, are versatile molecular binding scaffolds composed of a single polypeptide chain. The small size of nanobodies bestows multiple therapeutic advantages (stability, tumor penetration) with the first therapeutic approval in 2018 cementing the clinical viability of this format. Structured data and sequence information of nanobodies will enable the accelerated clinical development of nanobody-based therapeutics. Though the nanobody sequence and structure data are deposited in the public domain at an accelerating pace, the heterogeneity of sources and lack of standardization hampers reliable harvesting of nanobody information. We address this issue by creating the Integrated Database of Nanobodies for Immunoinformatics (INDI, http://naturalantibody.com/nanobodies). INDI collates nanobodies from all the major public outlets of biological sequences: patents, GenBank, next-generation sequencing repositories, structures and scientific publications. We equip INDI with powerful nanobody-specific sequence and text search facilitating access to >11 million nanobody sequences. INDI should facilitate development of novel nanobody-specific computational protocols helping to deliver on the therapeutic promise of this drug format.


Assuntos
Camelidae/imunologia , Bases de Dados Genéticas , Neoplasias/terapia , Anticorpos de Domínio Único/imunologia , Sequência de Aminoácidos/genética , Animais , Anticorpos/classificação , Anticorpos/imunologia , Camelidae/classificação , Humanos , Imunoterapia/classificação , Neoplasias/imunologia , Anticorpos de Domínio Único/classificação
15.
Mol Biol Rep ; 49(2): 1303-1320, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807377

RESUMO

BACKGROUND: Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS: In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS: Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.


Assuntos
Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Sequência de Aminoácidos/genética , Humanos , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerase II/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/fisiologia
16.
Parasitol Int ; 87: 102519, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34800724

RESUMO

Information about Plasmodium malariae is scanty worldwide due to its "benign" nature and low infection rates. Consequently, studies on the genetic polymorphisms of P. malariae are lacking. Here, we report genetic polymorphisms of 28 P. malariae circumsporozoite protein (Pmcsp) isolates from Malaysia which were compared with those in other regions in Asia as well as those from Africa. Phylogenetic analysis revealed that most Malaysian P. malariae isolates clustered together but independently from other Asian isolates. Low nucleotide diversity was observed in Pmcsp non-repeat regions in contrast to high nucleotide diversity observed in non-repeat regions of Plasmodium knowlesi CSP gene, the current major cause of malaria in Malaysia. This study contributes to the characterisation of naturally occurring polymorphisms in the P. malariae CSP gene.


Assuntos
Malária/parasitologia , Filogenia , Plasmodium malariae/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Sequência de Aminoácidos/genética , Malária/epidemiologia , Malásia/epidemiologia , Nucleotídeos , Plasmodium knowlesi/genética , Plasmodium malariae/química , Plasmodium malariae/classificação , Proteínas de Protozoários/química
17.
Nucleic Acids Res ; 50(D1): D1221-D1230, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755868

RESUMO

A knowledgebase of the systematic functional annotation of fusion genes is critical for understanding genomic breakage context and developing therapeutic strategies. FusionGDB is a unique functional annotation database of human fusion genes and has been widely used for studies with diverse aims. In this study, we report fusion gene annotation updates aided by deep learning (FusionGDB 2.0) available at https://compbio.uth.edu/FusionGDB2/. FusionGDB 2.0 has substantial updates of contents such as up-to-date human fusion genes, fusion gene breakage tendency score with FusionAI deep learning model based on 20 kb DNA sequence around BP, investigation of overlapping between fusion breakpoints with 44 human genomic features across five cellular role's categories, transcribed chimeric sequence and following open reading frame analysis with coding potential based on deep learning approach with Ribo-seq read features, and rigorous investigation of the protein feature retention of individual fusion partner genes in the protein level. Among ∼102k fusion genes, about 15k kept their ORF as In-frames, which is two times compared to the previous version, FusionGDB. FusionGDB 2.0 will be used as the reference knowledgebase of fusion gene annotations. FusionGDB 2.0 provides eight categories of annotations and it will be helpful for diverse human genomic studies.


Assuntos
Bases de Dados Genéticas , Fusão Gênica/genética , Genoma Humano/genética , Genômica , Sequência de Aminoácidos/genética , Aprendizado Profundo , Humanos , Bases de Conhecimento , Anotação de Sequência Molecular
18.
J Med Virol ; 94(1): 310-317, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506640

RESUMO

SARS-CoV-2 is a newly discovered beta coronavirus at the end of 2019, which is highly pathogenic and poses a serious threat to human health. In this paper, 1875 SARS-CoV-2 whole genome sequences and the sequence coding spike protein (S gene) sampled from the United States were used for bioinformatics analysis to study the molecular evolutionary characteristics of its genome and spike protein. The MCMC method was used to calculate the evolution rate of the whole genome sequence and the nucleotide mutation rate of the S gene. The results showed that the nucleotide mutation rate of the whole genome was 6.677 × 10-4 substitution per site per year, and the nucleotide mutation rate of the S gene was 8.066 × 10-4 substitution per site per year, which was at a medium level compared with other RNA viruses. Our findings confirmed the scientific hypothesis that the rate of evolution of the virus gradually decreases over time. We also found 13 statistically significant positive selection sites in the SARS-CoV-2 genome. In addition, the results showed that there were 101 nonsynonymous mutation sites in the amino acid sequence of S protein, including seven putative harmful mutation sites. This paper has preliminarily clarified the evolutionary characteristics of SARS-CoV-2 in the United States, providing a scientific basis for future surveillance and prevention of virus variants.


Assuntos
COVID-19/epidemiologia , Evolução Molecular , Genoma Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos/genética , COVID-19/patologia , Biologia Computacional , Humanos , Taxa de Mutação , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
19.
FEBS J ; 289(2): 355-362, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33604985

RESUMO

Historically, the genetic analysis of mammalian cells entailed the isolation of randomly arising mutant cell lines with altered properties, followed by laborious genetic mapping experiments to identify the mutant gene responsible for the phenotype. In recent years, somatic cell genetics has been revolutionized by functional genomics screens, in which expression of every protein-coding gene is systematically perturbed, and the phenotype of the perturbed cells is determined. We outline here a novel functional genomics screening strategy that differs fundamentally from commonly used approaches. In this strategy, we express libraries of artificial transmembrane proteins named traptamers and select rare cells with the desired phenotype because, by chance, a traptamer specifically perturbs the expression or activity of a target protein. Active traptamers are then recovered from the selected cells and can be used as tools to dissect the biological process under study. We also briefly describe how we have used this new strategy to provide insights into the complex process by which human papillomaviruses enter cells.


Assuntos
Linhagem da Célula/genética , Genômica , Proteínas de Membrana/genética , Internalização do Vírus , Sequência de Aminoácidos/genética , Linhagem Celular , Regulação da Expressão Gênica/genética , Humanos , Programas de Rastreamento , Transporte Proteico/genética
20.
FEBS J ; 289(1): 231-245, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270849

RESUMO

The post-translational acetylation of lysine residues is found in many nonhistone proteins and is involved in a wide range of biological processes. Recently, we showed that the nucleoprotein of the influenza A virus is acetylated by histone acetyltransferases (HATs), a phenomenon that affects viral transcription. Here, we report that the PA subunit of influenza A virus RNA-dependent RNA polymerase is acetylated by the HATs, P300/CREB-binding protein-associated factor (PCAF), and general control nonderepressible 5 (GCN5), resulting in accelerated endonuclease activity. Specifically, the full-length PA subunit expressed in cultured 293T cells was found to be strongly acetylated. Moreover, the partial recombinant protein of the PA N-terminal region containing the endonuclease domain was also acetylated by PCAF and GCN5 in vitro, which facilitated its endonuclease activity. Mass spectrometry analyses identified K19 as a candidate acetylation target in the PA N-terminal region. Notably, the substitution of the lysine residue at position 19 with glutamine, a mimic of the acetyl-lysine residue, enhanced its endonuclease activity in vitro; this point mutation also accelerated influenza A virus RNA-dependent RNA polymerase activity in the cell. Our findings suggest that PA acetylation is important for the regulation of the endonuclease and RNA polymerase activities of the influenza A virus.


Assuntos
Histona Acetiltransferases/genética , Vírus da Influenza A/genética , Influenza Humana/genética , RNA Polimerase Dependente de RNA/genética , Fatores de Transcrição de p300-CBP/genética , Acetilação , Sequência de Aminoácidos/genética , Humanos , Influenza Humana/virologia , Nucleoproteínas/genética , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , RNA Viral/genética , Proteínas Virais/genética , Transcrição Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...